
2024-07-20 Denver

Showing Up for Python in GNOME

Dan Yeaw (@danyeaw:gnome.org)

Showing Up for Python in GNOME

Dan Yeaw (@danyeaw:gnome.org)

20
24

-0
7-

20

Showing Up for Python in GNOME

Showing Up for Python in GNOME 2

About Me

Dan Yeaw (pronounced: Yaw)
Originally from California, now live in Michigan
Gaphor, Gvsbuild, PyGObject

About Me

Dan Yeaw (pronounced: Yaw)
Originally from California, now live in Michigan
Gaphor, Gvsbuild, PyGObject

20
24

-0
7-

20

Showing Up for Python in GNOME

About Me

Hi, I’m Dan Yeaw, and I’m sooo excited to talk to you about Showing up for Python in GNOME!!
For my day job I work on Functional Safety at Ford Motor Company in Functional Safety, which
helps ensure that complex software systems don’t malfunction and cause harm. As part of this, I
model the behavior, structure, and requirements these systems need to have as part of the rigor
we apply to the system design.
About 6 years ago, I started to get involved in a Python GTK app called Gaphor - with the goal
of being able to do this systems modeling with an open source tool. Gaphor is now a GNOME
Circle app for doing SysML and UML modeling.
I took over hosting Michigan Python to learn and collaborate with others using Python.
I also got involved in Gvsbuild to help fix pain points with running Gaphor on Windows. Finally I
got more involved in PyGObject over the last year to help it thrive, and that’s what this talk will
be about.

Showing Up for Python in GNOME 3

Unleashing Interests with Python

>>> import pypokedex
>>> pokemon = pypokedex.get(name="Decidueye")
>>> pokemon.name
'decidueye'
>>> pokemon.types
['grass', 'ghost']
>>> pokemon.base_stats
BaseStats(hp=78, attack=107, defense=75, sp_atk=100, sp_def=100)

Unleashing Interests with Python

>>> import pypokedex
>>> pokemon = pypokedex.get(name="Decidueye")
>>> pokemon.name
'decidueye'
>>> pokemon.types
['grass', 'ghost']
>>> pokemon.base_stats
BaseStats(hp=78, attack=107, defense=75, sp_atk=100, sp_def=100)

20
24

-0
7-

20

Showing Up for Python in GNOME

Unleashing Interests with Python

With a little help, my 10 year old son can figure out how make simple games and apps with
Python, his latest project is trying to make a Pokedex for Pokemon. He loves geeking out on
Pokemon, and that it is so much fun to see people get deep in to their interests!
Python is easy to learn, but hard to master - it scales easily with your skillset. It is such
an important language for our ecosystem. It is often used by students, researchers, and non-
professional programmers. It is used by artists, data scientists, web developers, sysadmins, and
astronomers.
With Builder, Workbench, Cambalache, and Flatpak, it has never been easier to build an app for
GNOME. This is the big tent, that we need, where we make room for and make it easy for all
kinds of people to build small apps for their projects to geek out on their interests. Python is the
perfect language this - so we need to make sure the GNOME experience with it lives up to this.

Showing Up for Python in GNOME 4

GNOME Python

PyGObject is the GTK and related library bindings for Python

GNOME Python

PyGObject is the GTK and related library bindings for Python

20
24

-0
7-

20

Showing Up for Python in GNOME

GNOME Python

PyGObject is Python in GNOME. It is the successor to PyGTK that James Henstridge started in
1998 that uses gobject-introspection directly to allow you to build GNOME apps using Python. If
you see the patterns in the app icons here, those deep interests that people geek out on includes
drawing and art, modeling, graphing, music, genealogy, manga, classic gaming, and scientific
reports.

Showing Up for Python in GNOME 5

On PyGObject

The current state of the Python bindings for GObject-based libraries is making
it really hard to recommend using Python as a language for developing GTK
and GNOME applications.

Emmanuele Bassi (2022)

On PyGObject

The current state of the Python bindings for GObject-based libraries is making
it really hard to recommend using Python as a language for developing GTK
and GNOME applications.

Emmanuele Bassi (2022)

20
24

-0
7-

20

Showing Up for Python in GNOME

On PyGObject

In December 2022, Emmanuele Bassi wrote a blog post called “On PyGObject” with a call to
action to get involved to help Christoph Reiter, the maintainer of the library. He went through 3
large use cases of features missing in PyGObject which really make it hard to recommend. These
included:

1. Typed Instances for things like GtkExpression, GtkRenderNode, and GtkEvent. These
Foundational Types weren’t supported since they aren’t based on GObjects.

2. The base wrapper for GObject itself is written in Python instead of using
gobject-introspection directly. This means that constructing and disposing of objects can
be difficult because PyGObject doesn’t automatically get access to the functions for doing
those operations.

3. Documentation is spread out everywhere, and a lot of it wasn’t updated for GTK4.

Showing Up for Python in GNOME 6

Commits Over Time

Figure 1: PyGObject Commits Over Time

Major contributors left the project over time.
Christoph Reiter heroically held things together since 2017.
However, the number of changes started to fall off, especially after 2020.

Commits Over Time

Figure 1: PyGObject Commits Over Time

Major contributors left the project over time.
Christoph Reiter heroically held things together since 2017.
However, the number of changes started to fall off, especially after 2020.20

24
-0

7-
20

Showing Up for Python in GNOME

Commits Over Time

You can see the pattern of this in the commit history, although it isn’t the only or even most
important indicator of community health. Major contributors like Simon Feltman, John Palmieri,
and Martin Pitt left the project - which is a natural part of open source. Christoph kept the fires
burning late in to the nights, but he was also working on other important open source projects
like MSYS2. PyGObject was mostly idling along with absolutely necessary changes only. This is
also the same time frame that GTK4 was released, so there was a lot of changes going on in the
wider ecosystem of libraries.

Showing Up for Python in GNOME 7

Getting Involved in an Undermaintained Project

Contributing to an undermaintained project can be difficult
Each extra contribution is placing a burden on the developer
Timely feedback to contributions is often not possible
To outsiders, the GNOME project can feel hard to join, especially in these
undermaintained areas

Getting Involved in an Undermaintained Project

Contributing to an undermaintained project can be difficult
Each extra contribution is placing a burden on the developer
Timely feedback to contributions is often not possible
To outsiders, the GNOME project can feel hard to join, especially in these
undermaintained areas

20
24

-0
7-

20

Showing Up for Python in GNOME

Getting Involved in an Undermaintained Project

Major open source projects really need a contribution funnel to get more people involved. This type
of community building requires many hands to help newcomers, triage issues, review contributions,
answer questions, and provide support.
Unfortunately, it is all too common to have one person trying to hold everything together on
multiple projects. This is a catch-22, that one person is barely holding things together, and each
issue raised, each merge request submitted is extra work and burden for them.
It doesn’t feel welcoming to new people if they show up to help and their contributions dead rot,
it is natural to move along and spend your time on things that you feel are making a difference.
Since GNOME is a whole project and developer access is across the project, this adds an extra
layer of complexity to try to figure out how to get through. For an undermaintained project, it
can feel like the GNOME community is behind a city wall, and your knocking on the unmanned
gate trying join.

Showing Up for Python in GNOME 8

Community Building

The GNOME Project Handbook greatly improves clarity on how to get involved
The GNOME Foundation could also take a greater role

Community Building

The GNOME Project Handbook greatly improves clarity on how to get involved
The GNOME Foundation could also take a greater role20

24
-0

7-
20

Showing Up for Python in GNOME

Community Building

Wow! The GNOME Project Handbook which was released at the end of January. is such a
special resource to document for everyone how to get involved and the expectations. A big shout
out to the team whole helped make that happen!
Since GNOME as a project is made up of volunteers and individuals paid by companies with their
own priorities, it can often be difficult to shift resources to help out a part of the ecosystem.
Emmanuele shouldn’t have to write blog posts asking for people to help get involved. There may
be an opportunity for the GNOME Foundation here to track the health of key GNOME projects
using metrics and then provide community building support for those that are starting to have
challenges to help them out before it becomes an issue.

Showing Up for Python in GNOME 9

The State of Python in GNOME

The State of Python in GNOME

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

Let’s switch gears a bit, over the last year, PyGObject has made some significant improvements!

Showing Up for Python in GNOME 10

Issue and Merge Request Triage

Closed about 200 issues
Total issue count went from over 300 to 175
Open or draft merge requests went from 30 to 19

Issue and Merge Request Triage

Closed about 200 issues
Total issue count went from over 300 to 175
Open or draft merge requests went from 30 to 19

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

Issue and Merge Request Triage

Let’s start with the basics! A clean issue and merge request backlog is important for a thriving
community. We made some major inroads over the last year to reduce the total open issue and
merge request counts.
Although we haven’t quite got all the way to just the subset that we are really going to work on,
issues in this 100-200 range feels good - something that contributors can get their head around.
Much more than this often feels overwhelming.

Showing Up for Python in GNOME 11

Fundamental Types

Most objects inherit from GObject
GtkExpression, GtkRenderNode, and GtkEvent do not
These are defined as a GObject.TypeInstance

Fundamental Types

Most objects inherit from GObject
GtkExpression, GtkRenderNode, and GtkEvent do not
These are defined as a GObject.TypeInstance

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

Fundamental Types

GObject is the base type system and object class and is used for most of GTK and related
libraries. Types are the fundamental part of a programming language like C, to translate a type
like a char to the machine architecture with a minimum size like 8 bits and a maximum size.
GLib provides a type system for GTK related libraries. Most of these types are fundamental
types that are instantiated by GLib automatically, like a gchar. Most objects are created by
inheriting from GObject to get memory management, properties like getters and setters, and
construction/deconstruction of instances. However, not every piece of data used in a GTK
application needs all that. So other fundamental types are created by GTK through defining a
class and instance structure. Up until recently, PyGObject didn’t support making use of these
Fundamental types for data in your program like Expressions, RenderNodes, and Events. Let’s
jump in to an example!

Showing Up for Python in GNOME 12

Workbench Column View Example

Workbench Column View Example

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

Workbench Column View Example

Workbench is this great app for learning and prototyping GNOME apps in Vala, Python, Rust, and
Javascript - I highly recommend it!! Here you can see the ColumnView example. ColumnView
was added in GTK4 as an easier way to create a table of data.
Here is a list of books with title, author, and year. You can sort the columns by clicking on the
column header, and also select a row which is shown in the light blue.
For Gaphor, I would like to integrate a table view of MBSE diagrams for doing analysis. So I
really wanted to make use of a ColumnView.

Showing Up for Python in GNOME 13

Sorting

Gtk provides an easy way to sort columns
Create a Sorter and then pass in a Gtk.PropertyExpression
this -> item -> property
Unfortunately, it isn’t so easy without Fundamental Types

Sorting

Gtk provides an easy way to sort columns
Create a Sorter and then pass in a Gtk.PropertyExpression
this -> item -> property
Unfortunately, it isn’t so easy without Fundamental Types

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

Sorting

As we saw in the ColumnView, being able to click on a column header to sort it is important or
even expected functionality. For strings, sorting A-Z is needed and for numbers sorting high to
low.
Since this is a common use case, Gtk provides a straightforward way to enable this sorting using
a type of Expression called a PropertyExpression. An Expression is a way to describe a reference
to a value and a Property Expression does what it sounds like, it provides a property value in an
Expression.
This is different than normal property bindings, because the object which is being bound doesn’t
have to exist when the expression is created. The expression is called this. It references an item,
which has a property. The expression is getting the value of this property.
It is still possible to sort columns without expressions, but it is a lot of work!

Showing Up for Python in GNOME 14

Sorting without Expressions - Creating a Sorting Model

column_view = workbench.builder.get_object("column_view")
col1 = workbench.builder.get_object("col1")
col2 = workbench.builder.get_object("col2")
col3 = workbench.builder.get_object("col3")

model_func = lambda _item: None
tree_model = Gtk.TreeListModel.new(data_model, False, True, model_func)
tree_sorter = Gtk.TreeListRowSorter.new(column_view.get_sorter())
sorter_model = Gtk.SortListModel(model=tree_model, sorter=tree_sorter)
selection = Gtk.SingleSelection.new(model=sorter_model)
column_view.set_model(model=selection)

Sorting without Expressions - Creating a Sorting Model

column_view = workbench.builder.get_object("column_view")
col1 = workbench.builder.get_object("col1")
col2 = workbench.builder.get_object("col2")
col3 = workbench.builder.get_object("col3")

model_func = lambda _item: None
tree_model = Gtk.TreeListModel.new(data_model, False, True, model_func)
tree_sorter = Gtk.TreeListRowSorter.new(column_view.get_sorter())
sorter_model = Gtk.SortListModel(model=tree_model, sorter=tree_sorter)
selection = Gtk.SingleSelection.new(model=sorter_model)
column_view.set_model(model=selection)20

24
-0

7-
20

Showing Up for Python in GNOME
The State of Python in GNOME

Sorting without Expressions - Creating a Sorting Model

First we get some objects from Workbench, the column view and the 3 columns. Next we create an
empty function called the model func using a lambda. We need to create a tree model, a tree sorter,
a sorter model, and then a selection which we set as the model for the ColumnView. The model
is a Gio.DataModel, we make use of Gtk by instatiating the TreeListModel, TreeListRowSorter,
SortListModel, and a SingleSelection.

Showing Up for Python in GNOME 15

Sorting without Expressions - Creating Sorting Logic

def str_sorter(object_a, object_b, column):
a = getattr(object_a, column).lower()
b = getattr(object_b, column).lower()
return (a > b) - (a < b)

def int_sorter(object_a, object_b, column):
a = getattr(object_a, column)
b = getattr(object_b, column)
return (a > b) - (a < b)

col1.set_sorter(Gtk.CustomSorter.new(str_sorter, "title"))
col2.set_sorter(Gtk.CustomSorter.new(str_sorter, "author"))
col3.set_sorter(Gtk.CustomSorter.new(int_sorter, "year"))

Sorting without Expressions - Creating Sorting Logic

def str_sorter(object_a, object_b, column):
a = getattr(object_a, column).lower()
b = getattr(object_b, column).lower()
return (a > b) - (a < b)

def int_sorter(object_a, object_b, column):
a = getattr(object_a, column)
b = getattr(object_b, column)
return (a > b) - (a < b)

col1.set_sorter(Gtk.CustomSorter.new(str_sorter, "title"))
col2.set_sorter(Gtk.CustomSorter.new(str_sorter, "author"))
col3.set_sorter(Gtk.CustomSorter.new(int_sorter, "year"))20

24
-0

7-
20

Showing Up for Python in GNOME
The State of Python in GNOME

Sorting without Expressions - Creating Sorting Logic

Next we need to create our sorting logic. The first function we define is for sorting strings, like for
the title and author columns. This function takes two objects and the column. It then gets both
values using getattr, and sets them to lowercase so that the case of the string doesn’t impact the
sorting order.
Then it compares the first character of the string based on the unicode ordinal value of the
character. If they are the same, then it compares the next character. If a is larger than b, the
function returns 1, and if b is larger than a it returns -1. The integer sorting function works the
same, except no lowercase is needed and the integers are directly compared.
Finally, we set the sorter of each column using Custom Sorters that we created. Wow, we did it,
but that was a lot of work!

Showing Up for Python in GNOME 16

Sorting with Expressions

col1_exp = Gtk.PropertyExpression.new(Book, None, "title")
col2_exp = Gtk.PropertyExpression.new(Book, None, "author")
col3_exp = Gtk.PropertyExpression.new(Book, None, "year")

col1.sorter = Gtk.StringSorter.new(col1_exp)
col2.sorter = Gtk.StringSorter.new(col2_exp)
col3.sorter = Gtk.NumericSorter.new(col3_exp)

Sorting with Expressions

col1_exp = Gtk.PropertyExpression.new(Book, None, "title")
col2_exp = Gtk.PropertyExpression.new(Book, None, "author")
col3_exp = Gtk.PropertyExpression.new(Book, None, "year")

col1.sorter = Gtk.StringSorter.new(col1_exp)
col2.sorter = Gtk.StringSorter.new(col2_exp)
col3.sorter = Gtk.NumericSorter.new(col3_exp)

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

Sorting with Expressions

The implementation of Fundamental Types in PyGObject fixes use case number 1 from the On
PyGObject blog post. The original work to support this was started in 2010, and Arjan Molenaar
brushed it off and brought it home.
Now we can make use of Expressions for our logic. Here we create three property expressions,
pass in our Book class, None because we don’t need to evaluate an extra Expression, and then
the column name.
Finally we set the sorter for each column to String Sorters for the title and author columns and
Numeric Sorters for the year column and pass in the Property Expressions we just created. Said
another way the sorter for each column is bound to the property of the book for that column.
The addition of Fundamental types is such a large improvement!

Showing Up for Python in GNOME 17

https://pygobject.gnome.org

https://pygobject.gnome.org

20
24

-0
7-

20

Showing Up for Python in GNOME
The State of Python in GNOME

https://pygobject.gnome.org

We use to have the pygobject docs hosted on read the docs. Rafael Mardojai also had a really nice
PyGObject-Guide which was a tutorial based on the Python GTK+3 Tutorial by Sebastian Pölsterl.
We worked with the communities to convert the projects from the GNU Free Documentation
License to the LGPL, merged the tutorials with the other docs, and moved them to a more official
pygobject.gnome.org subdomain.

Showing Up for Python in GNOME 18

Packaging and Development Environment Improvements

Packaging and Development Environment Improvements

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Showing Up for Python in GNOME 19

Legacy Packaging

setup.py requires arbitrary code execution
pyproject.toml is a more explicit way to declare dependencies

The steps to build a Python project then can be separated:

1. Checkout the project
2. Install the build system
3. Execute the build

Legacy Packaging

setup.py requires arbitrary code execution
pyproject.toml is a more explicit way to declare dependencies

The steps to build a Python project then can be separated:

1. Checkout the project
2. Install the build system
3. Execute the build

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Legacy Packaging

The Python project configuration in setup.py files was the standard for a very long time and
is still widely adopted. When Python first developed its tooling for building projects, distutils
was the answer. As time went on, setuptools gained popularity to add some features on top of
distutils. Both used the concept of a setup.py file that project maintainers executed to build and
install the software.
The downfall of this is there wasn’t really a good way to declare what dependencies a project needs
without running the setup.py file itself. The main Python install tool pip, was then executing
arbitrary Python code just for pip to see the dependencies or to install a package.
An advantage of this was as a project maintainer, you could customize your build system in the
setup.py directly. But, let’s move to a more modern alternative where we can break up our build
steps to install the build system and then execute the build.

Showing Up for Python in GNOME 20

meson-python

meson-python is a build backend for Python leveraging Meson

pyproject.toml

[tool.meson-python.args]
setup = ["-Dtests=false", "-Dwheel=true", "--wrap-mode=nofallback"]
[build-system]
build-backend = "mesonpy"
requires = ["meson-python>=0.12.1", "pycairo>=1.16"]

Build and Test

$ meson setup _build
$ meson test -C _build

meson-python

meson-python is a build backend for Python leveraging Meson

pyproject.toml

[tool.meson-python.args]
setup = ["-Dtests=false", "-Dwheel=true", "--wrap-mode=nofallback"]
[build-system]
build-backend = "mesonpy"
requires = ["meson-python>=0.12.1", "pycairo>=1.16"]

Build and Test

$ meson setup _build
$ meson test -C _build20

24
-0

7-
20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

meson-python

Meson is the standard build system used by GNOME projects, it is easy to use, powerful, and fast.
meson-python implement the Python build system hooks, enabling Python build front-ends such
as pip and build to build and install Python packages based on a Meson build definition. Since
we are separating the steps any way when moving away from setup.py, we use meson-python to
also build PyGObject. Other popular Python libraries like Numpy and Scipy have already moved
to use meson-python, and pycairo (the python bindings for Cairo) will as well soon. It especially
fills the niche of Python projects that need to compile other languages as well.
Here is a portion of the pyproject.toml looks like for the build settings this is the file that replaces
setup.py. The parts in brackets are the section for meson-python arguments and the build system,
and in each section are the key value pairs for setup options, the build backend, and build
dependencies.
Nice so now we can build PyGObject like any other GNOME project.

Showing Up for Python in GNOME 21

PDM

Figure 2: Packaging Categorization by Anna-Lena Popkes

PDM

Figure 2: Packaging Categorization by Anna-Lena Popkes

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

PDM

When someone says Python Packaging, they could mean a lot of different things.
• Environment management (which is mostly concerned with virtual environments) in purple
• Package management in blue
• Python version management in grey
• Package building in yellow
• Package publishing in red

meson-python takes care of the yellow since it is a build tool. We decided to add PDM to the
mix which takes care of a lot of the other areas to make it easier to contribute to the project
and still works with meson-python. It manages dependencies installation including resolving and
locking dependency versions, setting up a virtual environment, and publishing new versions of
PyGObject to PyPI which is the Python Package Index.
One of the other tools in the blue, called pipx, is really nice for installing isolated Python tools.
As long as you have the other system dependencies installed for PyGObject, you can install PDM
using pipx, grab the PyGObject source, and then run pdm install to get a complete working
environment.
Reference: https://alpopkes.com/posts/python/packaging_tools/

Showing Up for Python in GNOME 22

Modernize API Docs

Modernize building docs using GI-DocGen and Sphinx

Template

class Template(**kwargs)

Methods

classmethod from_file(filename)
Parameters: filename

classmethod from_resource(resource_path)
Parameters: resource_path

Modernize API Docs

Modernize building docs using GI-DocGen and Sphinx

Template

class Template(**kwargs)

Methods

classmethod from_file(filename)
Parameters: filename

classmethod from_resource(resource_path)
Parameters: resource_path20

24
-0

7-
20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Modernize API Docs

Just like many other libraries have been upgrading from GTK-Doc to GI-DocGen, PyGObject also
recently made the switch. GI-Docgen reuses the introspection data generated by GObject-based
libraries to generate the API reference of these libraries.
Previously, we were using pgi-docgen. pgi is a cool project by Christoph to create python bindings
without C code. pgi-docgen was then able to read the GIR docs and create a Sphinx website
from them. But, we decided to move to a more standard approach.
Previously missing documentation, like for Gtk.Template is now available and because we are
using the introspection data directly and less maintenance is required going forward.

Showing Up for Python in GNOME 23

Main Branch

Small change to rename the primary branch to main
Improves exclusivity and standardization with other GNOME projects

Main Branch

Small change to rename the primary branch to main
Improves exclusivity and standardization with other GNOME projects

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Main Branch

Showing Up for Python in GNOME 24

Overview of Async IO

Cooperative multitasking
Scheduled concurrently, but not actually run at the same time
Can provide large speedups if waiting on slower tasks

Overview of Async IO

Cooperative multitasking
Scheduled concurrently, but not actually run at the same time
Can provide large speedups if waiting on slower tasks

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Overview of Async IO

Async IO is a means to use cooperative multitasking. It gives the feeling of concurrency despite
using a single thread in a single process. The central feature of AsyncIO called Coroutines can
be scheduled concurrently, but they don’t actually run at the same time. This can provide large
speedups for cases where the program is waiting on something slower than the main execution of
the program itself. For example, if a program needs to go out and fetch information from the
network or from a complex database query, it can schedule other things to happen while it is
waiting for the data to return.

Showing Up for Python in GNOME 25

Async IO with my Kids

Async IO with my Kids

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Async IO with my Kids

We have a Nintendo Switch at home and my kids like to play some Super Mario Kart 8 Deluxe or
Super Smash Brothers with me. But, boy do they really take a long time to actually start playing.
They will browse a couple videos about new game releases, they’ll watch the game’s opening
credits, they will customize their character. Pretty soon, it is 15 min before we have even started
to play something. There also really isn’t an opportunity to interact much with them during this
time period, so I’ll often open my phone and see what’s new on Mastodon, look at the latest
chatter on Matrix, or take a look at anything new with the open source projects I’m working on.
In this scenario, I am not doing full multitasking to do both things at the same time, I do other
things while I wait for them to get ready. I didn’t do more things at once, but I did do more
things overall that I wanted to do.
This is kind of how Async IO works, it allows us to schedule tasks in coroutines, like playing a
video game and looking at my phone, and switch between them.

Showing Up for Python in GNOME 26

Async IO in Python
import asyncio

async def hello():
print('Hello ...')
await asyncio.sleep(1)
print('... World!')

async def main():
await asyncio.gather(hello(), hello())

asyncio.run(main())

Hello ...
Hello ...
... World!
... World!

Async IO in Python
import asyncio

async def hello():
print('Hello ...')
await asyncio.sleep(1)
print('... World!')

async def main():
await asyncio.gather(hello(), hello())

asyncio.run(main())

Hello ...
Hello ...
... World!
... World!

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Async IO in Python

This is a simple Hello World example of using Async IO. First we import it. Next we define a
hello coroutine, which is a normal function definition with the async keyword in front. We print
hello. Next we use the await keyword to let another coroutine run to sleep for 1 second. Finally
after that runs we print World.
We also define a 2nd coroutine called main, this uses async.gather to schedule the hello
coroutine to be run twice concurrently as two tasks. When this executes, it print Hello, then runs
sleep, but that is non-blocking so and there is another call of hello scheduled, so it prints Hello
again. Once the sleep coroutine finishes, it resumes printing World twice.

Showing Up for Python in GNOME 27

Python Async with Gbulb

Gbulb uses the full GLib EventLoop
import asyncio, gbulb

gbulb.install(gtk=True)

loop = asyncio.get_event_loop()
loop.run_forever(application=my_gapplication_object)

Python Async with Gbulb

Gbulb uses the full GLib EventLoop
import asyncio, gbulb

gbulb.install(gtk=True)

loop = asyncio.get_event_loop()
loop.run_forever(application=my_gapplication_object)

20
24

-0
7-

20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Python Async with Gbulb

Here you can see that it was possible to import asyncio and gbulb, and tie asyncio to GLib
EventLoop. This is useful for GUI applications because if you have something long running, you
won’t block the GUI and make it unresponsive. It was a heavy implementation that implements
most asyncio functions on top of GLib. There was also another library called asyncio-glib.
To compare them, Gbulb dispatches asyncio callbacks directly from the GLib main loop. In
contrast, asyncio-glib iterates the GLib main loop until an asyncio event is ready and then has
asyncio event loop dispatch the event.
Here is an example for Gbulb, where run the gbulb.install function, get the asyncio event loop,
and then run the loop while passing in the GTK App.
One disadvantage of both Gbulb and asyncio-glib is that they don’t allow you to await Gio
asynchronous results. Gio is a GLib library for things like general purpose I/O and networking.
Access to many of these things can be slower than your app, and is a great use case for Async IO.

Showing Up for Python in GNOME 28

Experimental: Async IO Integration

async def idle_test():
bus = await Gio.bus_get(Gio.BusType.SYSTEM)
print(

await bus.call(
"org.freedesktop.DBus",
"/org/freedesktop/DBus",
"org.freedesktop.DBus",
"ListNames",
None, None, 0, -1,

)
)

Experimental: Async IO Integration

async def idle_test():
bus = await Gio.bus_get(Gio.BusType.SYSTEM)
print(

await bus.call(
"org.freedesktop.DBus",
"/org/freedesktop/DBus",
"org.freedesktop.DBus",
"ListNames",
None, None, 0, -1,

)
)20

24
-0

7-
20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Experimental: Async IO Integration

After 2 years of work, Benjamin Berg finished an initial implementation of Asyncio integration
with PyGObject which was merged this week! So now we have Python asyncio await for Gio
async results. This approach uses the GMainLoop to drive the EventLoop, and it allows us to
await Gio async functions.
Let’s walk through an example listing the names that are available on the DBus. DBus allows
inner process communication to allow applications to talk to each other. After doing some
imports (which I didn’t show here), we define a coroutine called idle test. Since Gio support
asynchronous calls we await getting the SystemBus by calling Gio.bus_get and passing in the bus
type. Now that we have the system bus, we call call the DBus while passing in the bus name,
object path, interface name, and the method we want to use, and various other parameters.

Showing Up for Python in GNOME 29

Experimental: Async IO Integration

policy = GLibEventLoopPolicy()
asyncio.set_event_loop_policy(policy)
loop = policy.get_event_loop()
loop.run_until_complete(idle_test())

(['org.freedesktop.DBus', 'org.freedesktop.Notifications',
':1.129', ':1.108', 'org.freedesktop.portal.Desktop',
'org.freedesktop.background.Monitor', ':1.9',
'org.gnome.Mutter.DisplayConfig', 'org.freedesktop.systemd1',
'org.gnome.Mutter.IdleMonitor', ...
])

Experimental: Async IO Integration

policy = GLibEventLoopPolicy()
asyncio.set_event_loop_policy(policy)
loop = policy.get_event_loop()
loop.run_until_complete(idle_test())

(['org.freedesktop.DBus', 'org.freedesktop.Notifications',
':1.129', ':1.108', 'org.freedesktop.portal.Desktop',
'org.freedesktop.background.Monitor', ':1.9',
'org.gnome.Mutter.DisplayConfig', 'org.freedesktop.systemd1',
'org.gnome.Mutter.IdleMonitor', ...
])20

24
-0

7-
20

Showing Up for Python in GNOME
Packaging and Development Environment Improvements

Experimental: Async IO Integration

Finally we need a bit of boilerplate to get things going. We get the GLibEventLoopPolicy which is
used to get or set event loops. We then set the policy with asyncio which wires up the GMainLoop
to drive the Eventloop. We then get the event loop and tell the program to run the idle test
coroutine until it is complete!
Our program then prints out the names from DBus and we have successfully awaited an async
results.
Wow, Async IO directly in PyGObject!

Showing Up for Python in GNOME 30

The Future

The Future

20
24

-0
7-

20

Showing Up for Python in GNOME
The Future

Showing Up for Python in GNOME 31

Wheels for Windows

Python 3.8+ no longer loads DLLs on the path
Building GTK using MSVC with pip install pygobject doesn’t work for
getting started
Solution: build wheels of PyGObject with the DLLs included

Wheels for Windows

Python 3.8+ no longer loads DLLs on the path
Building GTK using MSVC with pip install pygobject doesn’t work for
getting started
Solution: build wheels of PyGObject with the DLLs included

20
24

-0
7-

20

Showing Up for Python in GNOME
The Future

Wheels for Windows

For security reasons, Python 3.8 stopped automatically loading DLLs on the path on Windows.
Many libraries including PyGObject previously depended on this behavior. If you do build GTK
on Windows using Gvsbuild or with MSVC directly, you don’t end up with a working PyGObject
without manually loading the DLLs or patching PyGObject.
We have discussed options to fix this, and there hasn’t been much excitement in adding a DLL
search routine in PyGObjects startup code. However, a Wheel format allows for DLLs to be
bundled along side of the PyGObject library and then they are automatically loaded. This would
also significantly improve install time as well, since users can directly install a pre-compiled version
of PyGObject instead of compiling it during the installation.
We should also consider building Wheels for the other platforms as well for this same reason.

Showing Up for Python in GNOME 32

Port to libgirepository-2.0

libgirepository is now part of GLib
The main enhancement is it now uses GObject.TypeInstance instead of C struct
aliasing

Port to libgirepository-2.0

libgirepository is now part of GLib
The main enhancement is it now uses GObject.TypeInstance instead of C struct
aliasing

20
24

-0
7-

20

Showing Up for Python in GNOME
The Future

Port to libgirepository-2.0

This one is more of a chore to make sure that PyGObject is using the latest libraries. libgirepository
was originally part of gobject-introspection, however it is now very stable and has been integrated
with GLib to improve the build process to prevent circular dependencies between GLib and
gobject-introspection.
The main change between the two versions of libgirepository is that it now uses GOb-
ject.TypeInstance as the basis of its type system, rather than simple C struct aliasing.
The symbol prefix was also updated from g_ to gi_, various function arguments changed, and
there were some modification to stack allocation.
Philip Withnall started this work to port PyGObject, and Arjan Molenaar has picked it up to try
to bring it home.

Showing Up for Python in GNOME 33

Move API Docs

Combine and merge the API docs to https://pygobject.gnome.org
This would finish centralizing all docs

Move API Docs

Combine and merge the API docs to https://pygobject.gnome.org
This would finish centralizing all docs

20
24

-0
7-

20

Showing Up for Python in GNOME
The Future

Move API Docs

Showing Up for Python in GNOME 34

Our New Story

PyGObject is a great choice for building apps in GNOME.

Our New Story

PyGObject is a great choice for building apps in GNOME.

20
24

-0
7-

20

Showing Up for Python in GNOME
The Future

Our New Story

Showing Up for Python in GNOME 35

Call to Action

https://gitlab.gnome.org/GNOME/pygobject

Contributions of any kind will help continue to help the community thrive
Submit and help triage issues
Continue to help us improve the docs
Help us fix bugs and implement features
Add examples to Workbench
Build projects with PyGObject
Chat with us at #python:gnome.org

Call to Action

https://gitlab.gnome.org/GNOME/pygobject

Contributions of any kind will help continue to help the community thrive
Submit and help triage issues
Continue to help us improve the docs
Help us fix bugs and implement features
Add examples to Workbench
Build projects with PyGObject
Chat with us at #python:gnome.org

20
24

-0
7-

20

Showing Up for Python in GNOME
The Future

Call to Action

Many of you have even more ideas on what we could improve next, and we would love to have
your contributions!

Showing Up for Python in GNOME 36

Wrap Up

Thanks!

Thank you so much to everyone who has contributed to PyGObject, and special thanks
to Christoph Reiter and Arjan Molenaar who help maintain it.

License

Creative Commons Attribution-Noncommercial (CC BY-NC)

Slides

https://github.com/danyeaw/presentations/tree/main/showing-up-for-python-in-
gnome

Wrap Up

Thanks!

Thank you so much to everyone who has contributed to PyGObject, and special thanks
to Christoph Reiter and Arjan Molenaar who help maintain it.

License

Creative Commons Attribution-Noncommercial (CC BY-NC)

Slides

https://github.com/danyeaw/presentations/tree/main/showing-up-for-python-in-
gnome20

24
-0

7-
20

Showing Up for Python in GNOME
The Future

Wrap Up

Showing Up for Python in GNOME 37

Questions?

Questions?

20
24

-0
7-

20

Showing Up for Python in GNOME
Questions?

	The State of Python in GNOME
	Packaging and Development Environment Improvements
	The Future
	Questions?

