
Your app everywhere –
Just in a Snap!

An interactive workshop

Till Kamppeter <till.kamppeter@gmail.com>

Jesús Soto <jesus.soto@canonical.com>

GUADEC - July 2023

mailto:till.kamppeter@gmail.com
mailto:jesus.soto@canonical.com

Introduction

This workshop is based on

"Snapping like Hell(sworth)"

from the Ubuntu Summit 2022

Thanks, Heather Ellsworth and Lucy Llewellyn, for your great work!

Heather Ellsworth

Lucy Llewelyn

Please download these slides!

You find them on the GUADEC web site, find this workshop on the timetable, open
its description page and go to "Presentation Materials" at the button.
https://events.gnome.org/event/101/contributions/460/

This way you can browse the slides in your own pace while setting up and doing
the exercises.

And you can copy and paste command lines and example code.

You can click the numerous links.

You can also read the advanced topics which will not get necessarily presented
here.

May the source (and these slides) always be with you!

Introduction

https://events.gnome.org/event/101/contributions/460/

What you will learn

● What the hell are Snaps?
● Why package as Snap?
● How to package GNOME applications as Snaps (snapping applications)
● Building your application from source or packaging binaries
● Finding dependencies
● Using an auxiliary Snap with all GNOME libraries, to save storage

What you need to know

● Basic installing from source and from classic packages (DEB, RPM, …)
● Little code tweaks
● Shell scripting

Introduction

Why do I organize and host Snap workshops on conferences?

On this conference there are many free software app developers and also potential
snappers in the community.

● Upstream should snap: Free software projects snap their apps by themselves.
○ They know the ins and outs and the quirks of their own apps
○ They can most easily adapt their apps for snapping
○ The one a user could trust most is the creator of the app

● If upstream does not do it we need volunteers in the community for app
snapping projects, like snapcrafters
○ Well-known projects like snapcrafters have a high degree of trustworthiness,

too.

Introduction

Setup

Your application everywhere, just in a Snap!

This is a workshop, interactive, so you will try everything on your laptop!

You need Ubuntu 22.04 or later, snapd, snapcraft, and LXD installed, basic
development/compiling utilities, activate Debian sources:

 $ update-manager (Settings -> Ubuntu Software -> Source code)
 $ sudo apt install build-essential git
 $ sudo apt build-dep gnome-text-editor (Gets all GNOME libraries

 and headers)
 $ sudo snap install lxd
 $ sudo lxd init (Simply press <Enter> on each question)
 $ sudo adduser `whoami` lxd
 $ sudo snap install --classic snapcraft
 $ sudo reboot

Setup

– – OR – – use our virtual machine image, on any system!

● We give you the file workshop-ubuntu-23.04.qcow2 (5.7 GB) on a USB stick,
please make a copy of it, so you can get back to the original state

● Or download (well!) before the workshop starts (let link open in browser):
https://drive.google.com/file/d/1kkxZ8GE3_UtG7orl5v2d4x_T4FhMUcbb/view?usp=sharin
g

● Works with any software which supports *.qcow2 images.
● Use 4 GB RAM, 2 CPUs, and 25 GB storage if possible. 2 GB RAM and 1 CPU

should also work.
● Check BIOS settings if hardware virtualization support is enabled.
● For example use Virtual Machine Manager, GNOME Boxes, or

qemu-system-x86_64

Setup

https://drive.google.com/file/d/1kkxZ8GE3_UtG7orl5v2d4x_T4FhMUcbb/view?usp=sharing
https://drive.google.com/file/d/1kkxZ8GE3_UtG7orl5v2d4x_T4FhMUcbb/view?usp=sharing

Virtual Machine Manager

● $ sudo apt install virt-manager
● Choose connection "QEMU/KVM" and NOT "QEMU/KVM User session" so that

you can transfer files via "scp" command
● Click button for creating a new virtual machine
● Choose "Import existing disk image"
● Operating system is Ubuntu 23.04
● Choose 4 GB RAM, 2 CPUs, 25 GB storage
● Get the VM's IP address via "ip addr" command
● Transfer files via "scp" command on the host, user "ubuntu", password

"ubuntu"

Setup

qemu-system-x86_64

● Command line:
$ qemu-system-x86_64 -smp 2 -m 4096 -machine accel=kvm \
 -display gtk,gl=on -net nic,model=virtio \
 -net user,hostfwd=tcp::8022-:22 -drive \
 file=IMAGE.qcow2,cache=none,format=qcow2,id=main,if=none \
 -device virtio-blk-pci,drive=main,bootindex=1 \
 -audiodev pa,id=ac97

● Transfer files, on host do (password: ubuntu):
$ scp -p 8022 FILE ubuntu@localhost:.
$ scp -p 8022 -r DIR ubuntu@localhost:.

Setup

Your Virtual Machine

● It is Ubuntu Desktop 23.04
● User: ubuntu
● Password: ubuntu
● Preceed command with sudo to run it as root, password ubuntu
● Transfer files from your host with scp

○ Get the IP address via "ip addr" command
○ Or change host name ("ubuntu") via GNOME Control Center, section "About"

● All the needed tools are already installed
● Editors installed: gnome-text-editor, vim, emacs, nano
● Install any additional package you need
● Mentioned GIT repositories in examples/, do exercises in exercises/

Setup

What the hell are Snaps? And
why should I use them?

Your application everywhere, just in a Snap!

● You are developer of an application?
● Already thought about how it gets distributed to end users?

⇒ This could turn people away from Linux!

● You provide the source code
○ Only tech-savvy users can use it directly
○ You need goodwill of distro maintainers to package your app
○ Distro version released ⇒ No update of your app in this distro version ⇒ User

always has to update to newest distro version
● You package your app, for 10+ distros and have to test on 10+ distros
● That is a nightmare! Isn't it?

What the hell are Snaps?

● You have a smartphone? There it is much easier: Google Play Store, App Store
● And remember that Canonical developed a smartphone OS?
● They have learned from it!

⇒ And now we have …

Snap!

What the hell are Snaps?

● A method of OS-distribution-independent packaging
○ You package and test once, put your Snap into the Snap Store, and users of

any distro (Ubuntu, Debian, SUSE, Red Hat, Windows, …) can use it.
○ All libraries and other dependencies come with your Snap
○ User experience as with smartphone apps

● Your app runs in a security shell (AppArmor), isolated from the host system
○ So-called sandboxed packaging
○ Communication to outside only via well-defined interfaces
○ Snap Store has control, has to explicitly permit "dangerous" interfaces
○ This way we can trust third-party apps
○ We are not dependent any more on distro maintainers for secure packages

What the hell are Snaps?

● Don't fear the daemons, we snap them, too!
○ Snap is universal, not only desktop apps but also daemons, system utilities,

sub-systems, drivers, … can get snapped

● Packaging moves from distros to upstream
○ 10+ distros, each packaging XXX, inventing the wheel 10+ times
○ So let upstream, XXX.org, snap it, distros take the Snap
○ Distro devs concentrate on distro core or contribute to upstream code
○ Distro version released, app updates continue from upstream

● Immutable distros, Immutable sub-systems, Immutable apps
○ Ubuntu Core: Immutable, all-Snap distro, desktop under development
○ Snaps are immutable apps (or immutable sub-systems, like the CUPS Snap)
○ Not that immutable, many system components, like printing stack or GPU

drivers in separate Snaps

What the hell are Snaps?

Example #1:

Hello World!

Your application everywhere, just in a Snap!

● What to expect
○ Use GNOME’s Gtk Hello World example as an example C program with GUI
○ Step-by-step process creating snapcraft.yaml
○ Iterative build

● Key concepts
○ Basic metadata, apps, parts
○ How to include build dependencies (build-packages:)
○ How to include runtime dependencies (stage-packages:)
○ "dump" plugin
○ Local source (source in same repository as snapping)
○ "Manual" building (override-build:)
○ build and test

Example #1: Hello World! – What are we doing?

● How to make the hello world: https://www.gtk.org/docs/getting-started/hello-world

● If you are not using our virtual machine, grab the source code from the site and put it into
~/exercises/hello-world-gtk/src/hello-world-gtk.c

● Build and run the app:
 $ cd ~/exercises/hello-world-gtk/src
 $ gcc $(pkg-config --cflags gtk4) -o hello-world-gtk \
 hello-world-gtk.c $(pkg-config --libs gtk4)
 $./hello-world-gtk

● Now you know what we will snap …

Example #1: Hello World! – Make the app!

https://www.gtk.org/docs/getting-started/hello-world

● We have the source and know how to make the binary
● Remove the binary, we do not need it in the Snap, it can actually break the Snap:

 $ rm hello-world-gtk
● Using your favorite editor, create ~/exercises/hello-world-gtk/snapcraft.yaml

This is the instruction file for the Snap build
● Ok what do we need?

○ metadata: Name, version, summary, description, base, confinement
○ apps: List of apps that will be built
○ parts: The stuff that builds the apps

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Let's snap it!

https://github.com/tillkamppeter/hello-world-gtk

● Enter these lines into your snapcraft.yaml file:

 name: hello-world-gtk
 version: '0.1'
 summary: Gtk Hello World example
 description: A simple Gtk example
 base: core22
 confinement: strict

● Recommended metadata: https://snapcraft.io/docs/adding-global-metadata
● Complete list of metadata keys/values:

https://snapcraft.io/docs/snapcraft-top-level-metadata

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Metadata

https://snapcraft.io/docs/adding-global-metadata
https://snapcraft.io/docs/snapcraft-top-level-metadata
https://github.com/tillkamppeter/hello-world-gtk

● Add these lines to your snapcraft.yaml file:

 apps:
 hello-world-gtk:
 command: src/hello-world-gtk
 plugs:
 - x11
 - wayland

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Apps

https://github.com/tillkamppeter/hello-world-gtk

● Add these lines to your snapcraft.yaml file:
 parts:
 hello-world-gtk:

plugin: dump
source: .
override-build: |

 set -eux
 cd src
 gcc $(pkg-config --cflags gtk4) -o hello-world-gtk \
 hello-world-gtk.c $(pkg-config --libs gtk4)
 cd ..
 craftctl default

build-packages:
 - pkgconf
 - libgtk-4-dev

stage-packages:
 - libgtk-4-1

● For a complete list of parts keys/values: https://snapcraft.io/docs/adding-parts

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Parts

https://snapcraft.io/docs/adding-parts
https://github.com/tillkamppeter/hello-world-gtk

● Build command: “snapcraft pack ” with options
○ -v = verbose output
○ --debug = in case of failure, drop us into the build environment

● Output of build process:

 $ snapcraft pack -v --debug
 Starting Snapcraft 7.4.3
 Logging execution to
 '/home/ubuntu/.local/state/snapcraft/log/snapcraft-20230729-145410.515361.log'
 Running on amd64 for amd64
 Launching instance…
 [...]
 Creating snap package…
 Created snap package hello-world-gtk_0.1_amd64.snap
 $

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Build it!

https://github.com/tillkamppeter/hello-world-gtk

● Command: “snap install ” with options
○ --dangerous = If not installed from store, circumvent store signature

 $ sudo snap install hello-world-gtk_0.1_amd64.snap --dangerous
 hello-world-gtk 0.1 installed

 $ snap run hello-world-gtk
 (hello-world-gtk:109667): Gtk-WARNING **: 14:50:30.500: Locale not supported by C library.
 Using the fallback 'C' locale.
 Gsk-Message: 14:50:30.710: Failed to realize renderer of type 'GskGLRenderer' for surface
 'GdkX11Toplevel': libEGL not available
 (hello-world-gtk:109667): Gtk-CRITICAL **: 14:50:30.759: Unable to connect to the accessibility bus
 at 'unix:path=/run/user/1000/at-spi/bus_1,guid=65774ea9c81c70feb5c5007163669b8e': Could not
 connect: Permission denied
 Gdk-Message: 14:50:30.760: Failed to get file transfer portal: Could not connect: Permission denied

Example #1: Hello World! - Install and run it!

● You probably have seen that we have compiled the source before snapping
and, instead of including that binary, let the Snap build process compile it
again.

● This is very important for sandboxed packaging.
● Our virtual machine is Ubuntu 23.04, so our manually compiled executable is

based on the libraries of this distribution
● The executables encapsulated in the Snaps get their libraries from a base

distro, in our case Ubuntu 22.04 (base: core22 in snapcraft.yaml), also
the `stage-packages:̀ are from this distro version.

● The binary built under Ubuntu 23.04 does not necessarily work under 22.04,
making the Snap fail.

Example #1: Hello World! – Important Remark

Example #2:

GNOME Text Editor

Your application everywhere, just in a Snap!

● Example for an actual GNOME application
● "extensions: [gnome]" in "apps:" entry: This includes the

GNOME snapcraft extension, saves work and resources
○ Adding GNOME, GTK, and desktop resources
○ Adding all needed plugs: "x11", "wayland", "desktop", "gsettings", …
○ Connects to the GNOME content provider Snaps which provide all libraries,

icons, themes, … –> Shared resources save storage space!
○ A snapcraft extension is for snapcraft.yaml like a *.inc for C files.

● "desktop: FILE.desktop" in "apps:" entry: *.desktop for launcher icon
● D-Bus (session bus) slot for GtkApplication registration
● When app prints and plugs "cups", we connect to CUPS Snap as content

provider to dependency-install it, like the GNOME content provider Snaps
● "layout:": To assure that auxiliary directories of the app can get accessed

Example #2: GNOME Text Editor – A GNOME app!

● Metadata in ~/examples/gnome-text-editor-workshop-examples/local-deb/snapcraft.yaml
(https://github.com/tillkamppeter/gnome-text-editor-workshop-examples):

name: gnome-text-editor
base: core22
grade: stable
confinement: strict
Summary: GNOME's Text Editor
Description: bla bla …
version: "42.2"
Trigger automatic installation of the CUPS Snap via "default-provider: cups"
plugs:
 foo-install-cups:
 interface: content
 content: foo
 default-provider: cups
 target: $SNAP_DATA/foo
slots:
 # for GtkApplication registration
 gnome-text-editor:
 interface: dbus
 bus: session
 name: org.gnome.TextEditor
layout:
 /usr/share/gnome-text-editor:
 bind: $SNAP/usr/share/gnome-text-editor

Example #2: GNOME Text Editor – Metadata

https://github.com/tillkamppeter/gnome-text-editor-workshop-examples

● Apps entry in ~/examples/gnome-text-editor-workshop-examples/local-deb/snapcraft.yaml
(https://github.com/tillkamppeter/gnome-text-editor-workshop-examples):

apps:
 gnome-text-editor:
 extensions: [gnome]
 command: usr/bin/gnome-text-editor
 desktop: usr/share/applications/org.gnome.TextEditor.desktop
 plugs:
 - gsettings
 - mount-observe
 - cups
 - home

Example #2: GNOME Text Editor – Apps

https://github.com/tillkamppeter/gnome-text-editor-workshop-examples

There are several methods to get hold on the app for snapping it
(~/examples/gnome-text-editor-workshop-examples/,
https://github.com/tillkamppeter/gnome-text-editor-workshop-examples):

● local-deb/: Local binary Debian package, no compiling or source needed,
can for example be a proprietary package to install on Ubuntu Core. To try,
copy ~/exercises/gnome-text-editor/gnome-text-editor_42.2-0ubuntu1_amd64.deb

parts:
 gnome-text-editor:
 plugin: dump
 source: gnome-text-editor_42.2-0ubuntu1_amd64.deb
 source-type: deb

We must take care of (non-GNOME) dependencies, via stage-packages: (or
adding them in additional parts)

Example #2: GNOME Text Editor – Get the app

https://github.com/tillkamppeter/gnome-text-editor-workshop-examples

● stage-packages/ : App which is in Ubuntu as Debian package, simply pulled in as a
dependency, always for the correct architecture, but note that the dependencies of the
staged packages are also staged (and the GNOME ones are not needed, they are in the
content provider Snap).

parts:
 gnome-text-editor:
 plugin: nil
 source: .
 stage-packages:
 - gnome-text-editor

To do it correctly we will have to remove unwished files, so this method is better
for simple command line utilities.

● The 2 previous methods were for quick-&-dirty snapping, let's do the real thing …

Example #2: GNOME Text Editor – Get the app

● snap/: Build the app from source
○ The way for "official" Snaps (especially if you are upstream).
○ No (binary) Debian packages of the app involved.
○ Get official upstream source, ideally directly from its GIT repository using

release tags
■ When hosting the snapping on GitHub we can auto-update the Snap on new

upstream versions: https://ubuntu.com/blog/improving-snap-maintenance-with-automation

○ Snapcraft plugins support common build systems:
■ autotools, make, cmake, flutter, rust, go, … Usually meson for GNOME apps
■ You only specify build configuration parameters, all commands are called

automatically.
 meson-parameters:
 - --prefix=/usr
 - --buildtype=release

Example #2: GNOME Text Editor – Build the app

https://ubuntu.com/blog/improving-snap-maintenance-with-automation

○ Extract upstream version number, summary, and description and use it for
the Snap (from GIT, from code, from AppStream XML file, …)
■ At top level: "adopt-info: gnome-text-editor "
■ In gnome-text-editor part: "parse-info: <XML file>"
■ In gnome-text-editor app: "common-id: <App ID from XML file>"
■ In gnome-text-editor part scriptlet: "craftctl set version=... "

○ Provide each app's icon as
$SNAP/meta/gui/icons/hicolor/scalable/apps/NAME.svg
and refer to it using "Icon=NAME" in the *.desktop file

○ Caching of icon theme directories: If caches for them are created with
gtk-update-icon-cache, less system calls and disk seeks. In
override-prime: find directories with index.theme file

Example #2: GNOME Text Editor – Build the app

● Build the Snap with the usual
$ snapcraft pack -v --debug

● Make sure that there is no classically installed GNOME Text Editor running
$ ps aux | grep gnome-text-editor
Close any still running instance.

● Start your snapped GNOME Text Editor via
$ snap run gnome-text-editor
or
$ /snap/bin/gnome-text-editor
Both commands override the $PATH priority of /usr/bin

● If you click "Activities" in the upper left and search, the second result should be the
Snap

● All versions here generally work but spill different amounts of warnings into the
terminal

Example #2: GNOME Text Editor – Snap and run!

Example #3:

GNOME Calculator

Your application everywhere, just in a Snap!

● Have a look at another example
https://github.com/ubuntu/gnome-calculator.git

● Many things are similar to GNOME Text Editor, but there is also
○ Summary and description are static, not taken from AppStream XML
○ Calculator does not print, so we do not drag in the CUPS Snap
○ Instead of using "layout:" we use

"--prefix=/snap/gnome-calculator/current/usr" and "organize:"
○ In "override-build:" We patch out the documentation building in

meson.build, documentation does not make sense in a Snap
○ "cleanup:" part: Core Snap and GNOME content provider Snaps contain a

lot of files of which we get duplicates by build-packages and stage-packages
and their dependencies. Remove them systematically (Check linter in build
process!!).

Example #3: GNOME Calculator – Stepping it up!

https://github.com/ubuntu/gnome-calculator.git

Your Turn!
Let's snap Your app!

Your application everywhere, just in a Snap!

Get the perfect snapper –
More info/Links

Your application everywhere, just in a Snap!

● Example Snaps used here:
○ https://github.com/ubuntu/gnome-text-editor
○ https://github.com/ubuntu/gnome-calculator
○ https://github.com/OpenPrinting/ghostscript-printer-app

● More Snap magic, not only for daemons, in my "Daemon Snapper's workshop"
(links to slides and exercises/examples):
○ https://events.canonical.com/event/2/contributions/42/

● Workshop GNOME app Snap example from Olivier Tilloy, each commit in this
GIT repository is one step of the snapcraft.yaml development:
○ https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main

● Want to snap something cute? Qt/KDE apps? Jesús' talk from Akademy 2023:
○ https://github.com/jssotomdz/qt-snaps

More info/links:

https://github.com/ubuntu/gnome-text-editor
https://github.com/ubuntu/gnome-calculator
https://github.com/OpenPrinting/ghostscript-printer-app
https://events.canonical.com/event/2/contributions/42/
https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main
https://github.com/jssotomdz/qt-snaps

● GitHub workflow to auto-update your Snap on each upstream release:
○ https://ubuntu.com/blog/improving-snap-maintenance-with-automation

● Ubuntu blogs from Oliver Smith about optimizing performance of Snaps:
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2

○ https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
○ https://ubuntu.com/blog/firefox-snap-updates-and-upgrades

● And to know why we all are snapping like hell (all-Snap Desktop):
○ https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop

● Want to watch some snappy videos? Here we go:
○ https://www.youtube.com/watch?v=TfB6QwR2GYg
○ https://www.youtube.com/watch?v=ido6kGmSHWI

More info/links:

https://ubuntu.com/blog/improving-snap-maintenance-with-automation
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI

● And at OpenPrinting we are also snappy:
○ http://www.openprinting.org/
○ https://openprinting.github.io/about-us/
○ https://openprinting.github.io/news/
○ https://snapcraft.io/publisher/openprinting
○ https://github.com/OpenPrinting

More info/links:

http://www.openprinting.org/
https://openprinting.github.io/about-us/
https://openprinting.github.io/news/
https://snapcraft.io/publisher/openprinting
https://github.com/OpenPrinting

See you (again) in Riga!

Your application everywhere, just in a Snap!

Time is passing in a Snap!

After 3 months of happy snapping we will meet again, on the Ubuntu Summit 2023!

November 3-5, 2023, here in Riga! http://summit.ubuntu.com/

And if you did not understand something in this workshop, or if you want to
recommend it to your friends, we will give it again on the Ubuntu Summit!

And a workshop about the GitHub workflow for automatic upstream release
updates.

Let us make Riga the capital of Snap!

See you (again) in Riga!

http://summit.ubuntu.com/

Advanced Topics

Your application everywhere, just in a Snap!

Finding Dependencies

Your application everywhere, just in a Snap!

A Snap needs to include all dependencies of the application: Libraries, fonts, icons,
utilities, … There are several ways to find them:

● Desktop apps: Use snapcraft extensions to cover most: "gnome",
"kde-neon", "flutter-...", …

● Have a look at classic Debian (or RPM) packages. Overtake their
dependencies for the Snap

● Investigate executables (and libraries) with the "ldd" command
● Read upstream source documentation
● Check the linter output in the end of the Snap build

Finding Dependencies

The GNOME extension and
library/resource Snaps

Your application everywhere, just in a Snap!

● With "extensions: [gnome]" in an "apps:" entry we include the
GNOME snapcraft extension

● A snapcraft extension is for snapcraft.yaml like a *.inc for C files

● Saves a lot of work for the snapper, to not have to repeat GNOME-specific
stuff and update it separately in each Snap
○ Adds GNOME, GTK, and desktop resources
○ Adds all needed plugs: "x11", "wayland", "desktop", "gsettings", …
○ Connects to the GNOME content provider Snaps which provide all libraries,

icons, themes, …

● Content provider Snaps contain files to be shared between other Snaps,
typically libraries, icons, themes for GUI apps for GNOME, KDE, Flutter, …
○ Snaps bringing all their dependencies get huge! Sharing helps.

The GNOME extension and library/resource Snaps

● TODO: More snapcraft extensions:
○ CUPS: Do both plug "cups" and add the content-provider blob to install the

CUPS Snap by a simple "extension: [cups]". See snapcraft.yaml of the
GNOME Text Editor

○ Printer Applications: A lot of repetition in the snapcraft.yaml and a lot of
work to apply updates in each of them … Imagine simply having parts to build
a classic CUPS driver plus an "extension: [retro-printer-app]" and
that's it … See https://github.com/OpenPrinting/ps-printer-app

The GNOME extension and library/resource Snaps

https://github.com/OpenPrinting/ps-printer-app

App from source or binary?

Your application everywhere, just in a Snap!

With the GNOME Text Editor we have seen that one can build Snaps from binary
files or compile the source, what to use?

● Source code, usually from upstream project (is that you?)
○ Free software/open-source only
○ Security: Auditable, choice of more secure compiler options, quick fixes
○ Adaptable to Snap file system and encapsulation
○ More frequent updates

■ Does not depend on goodwill of distro packagers, low frequency of Ubuntu LTS, …

■ Immediately grab upstream releases, even development snapshots
■ GIT-based update-automation:

https://ubuntu.com/blog/improving-snap-maintenance-with-automation

■ Especially important for hardware enablement (drivers)

Apps from source or binary?

https://ubuntu.com/blog/improving-snap-maintenance-with-automation

● Binary files
○ Allows snapping proprietary, closed-source software

■ Do not put into the Snap Store without permission!
■ For private use, like running the software on Ubuntu Core

○ Quick addition of software pieces as "stage-packages:"
■ Update only every 2 years with Ubuntu LTS
■ Pulls in all the package's dependencies, can be good, but also bad (desktop

apps with content provider Snap).

○ Less/no knowledge in compiling/patching/coding needed
○ Not adaptable, for file system paths, system users, chown, … So snapping

could get tricky

Apps from source or binary?

Patching the code

Your application everywhere, just in a Snap!

● Why do we need to modify (patch) the upstream code?
○ Complex applications often get tricky to snap
○ Upstream's design did not take Snap into account
○ Upstream does not always accept the changes, or it takes time until the next

release
○ Even classic Debian/RPM packaging often needs patches

● Examples for patching needs
○ Directory and file locations used are hard-coded, no options, config, …
○ A snapped service (with a slot) has to determine what the client Snap plugs, to

accept/deny inquiry
○ Application does operations which are not allowed under confinement (like

chown/chmod) but are also not needed under confinement

Patching the code

● In snapcraft.yaml (only relevant lines, patch is in snap/local/ of your
project repository):

parts:
 my-application:
 override-build: |
 patch -p1 < $CRAFT_PROJECT_DIR/snap/local/log.patch
 craftctl default

Patching the code

● Alternative: Command-line editing with "sed" or "perl":

● In snapcraft.yaml (only relevant lines):

parts:
 my-application:
 override-build: |
 sed -i.bak -e 's|Icon=@app_id@$|Icon=app.icon|g' \
 app.desktop.in.in
 perl -p -i -e 's/chown lp.lp file//' script.sh
 craftctl default

Patching the code

Interfaces: Safe vs. Dangerous

Your application everywhere, just in a Snap!

● Snapped applications are completely encapsulated (AppArmor)
● By default, they cannot communicate with the host system or with other Snaps
● Communication is possible via well-defined interfaces: "network", "cups",

"dbus", …
● A "plug" has to be connected with a "slot" of the system or of another Snap in

order to communicate
○ “Safe” interfaces

■ Ex.: “cups” which allows listing available printers and printing
■ are auto-connected when installing from Snap Store

○ “Dangerous” interfaces
■ Ex.: “cups-control” which allows creating/removing printers, delete all jobs …
■ need manual connection or permission from Snap Store team for

auto-connection

Interfaces: Safe vs. Dangerous

Cleaning up …

Your application everywhere, just in a Snap!

● Snaps containing all the app's dependencies can get very large
● So we should take care not to pack too much
● We should not include (or remove):

○ Header files of libraries (*.inc), pkgconfig files (*.pc), static libraries (*.a),
*.la, lintian

○ Development utilities
○ Man pages and other documentation, examples
○ /var
○ Library binaries which are reported unused by the linter
○ Files which the desktop's/GUI toolkit's content provider Snap already contains
○ Parts of the upstream package we do not need in this Snap (if we need libcups

of the CUPS package, remove cupsd)

Cleaning up …

● How to remove/clean up:
○ "Negative" entries in "prime:"

 prime:
 - -usr/include
 - -usr/lib/pkgconfig
 - -usr/share/fonts
 - -usr/share/man
 - -usr/share/doc
 - -usr/share/doc-base
 - -usr/share/lintian

Cleaning up …

○ Do not build the whole source code (via "override-build:") or build
("./configure") parameters

○ Skip "make install", manually copy selected files (via
"override-build:")

override-build: |

 set -eux
 ./configure --sysconfdir=/var/snap/...
 cd cups
 make
 cd ..
 cd filter

 make rastertoepson
 cd ..

 mkdir -p $CRAFT_PART_INSTALL/usr/lib
 cp cups/libcups*.a $CRAFT_PART_INSTALL/usr/lib/
 cp -P cups/libcups*.so* $CRAFT_PART_INSTALL/usr/lib/

 [...]
 mkdir -p $CRAFT_PART_INSTALL/usr/lib/ghostscript-printer-app/filter
 cp filter/rastertoepson $CRAFT_PART_INSTALL/usr/lib/ghostscript-printer-app/filter

 #craftctl default # DO NOT do the default action here!!

Cleaning up …

○ Build from source instead of pulling it as "stage-packages:", then
adapt/customize
■ The Ghostscript Printer Application Snap contains many printer drivers which

Debian provides as "printer-driver-..." Debian packages
■ The packages depend on CUPS (the daemon), Ghostscript, QPDF, and a lot of

other things
■ As we have the CUPS daemon in the CUPS Snap and build the other

dependencies by ourselves from source for newer versions (than Ubuntu LTS)
and updates, we avoid "stage-packages:" here and build from source

■ But we use the source of Debian's packaging repos to get it with Debian's
patches

Cleaning up …

○ "cleanup:" part applied in the very end of Snap build
■ Spot duplicate files (here libraries), especially also duplicates with the content

provider Snaps for the dektops/GUIs
cleanup:
 after: [gnome-calculator]
 plugin: nil
 build-snaps: [core22, gtk-common-themes, gnome-42-2204]
 override-prime: |
 set -eux
 for snap in "core22" "gtk-common-themes" "gnome-42-2204"; do
 cd "/snap/$snap/current" && \
 find . -type f,l -name *.so.* \
 -exec rm -f "$CRAFT_PRIME/{}" \;
 done

Cleaning up …

