
How can I make my project more
environmentally friendly?

Philip Withnall
Endless

philip@tecnocode.co.uk

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

25 minutes allocated. 20 minutes for talk, 5 minutes for questions.
Welcome. I’m going to talk about how you can make your project more
environmentally friendly. The aims of this talk are to:

• help you to help the environment;

• increase knowledge about where environmental costs lie, and how to
avoid them;

• establish an end point for this process: how environmentally friendly
do you have to make your project, and how much does it matter;
and

• lay out questions which still need answers.

How can I make my project more
environmentally friendly?

Philip Withnall
Endless

philip@tecnocode.co.uk

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Some of you may have been at Aditya’s talk on the first day of the con-
ference. If you weren’t, I recommend checking out the recording. While
his talk looked at helping users identify applications which are consuming
power, my talk will look at helping developers reduce the environmental
impact of a specific app.

https://events.gnome.org/event/1/contributions/67/

Motivation

Limiting global warming to 1.5 ◦C is a global priority

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Motivation

This is the same slide as in my talk on the environment last year, and it’s
still as relevant.
Global greenhouse gas emissions need to decline by 45% by 2030 (9 years’
time), and reach net zero by 2050 (29 years’ time)[sr15]. Net zero is
where all greenhouse gas emissions that can’t be eliminated are balanced
by carbon absorption in the environment (by trees) or by using as-yet-
nonexistent carbon capture technology. Throughout this talk I’ll use carbon
dioxide as a proxy for all greenhouse gases. I’ll also use energy and carbon
interchangeably, as all energy production has a carbon cost of generation
(which I’ll cover shortly).
The longer it takes for emissions to reach net zero, the higher the global
average temperature will rise. So early reductions are better. Typically,
warming is expected to be greater than 1.5 ◦C on land and less than that
on oceans[sr15].

Life cycle analysis and products

Figure: Life cycle analysis (public domain)20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Life cycle analysis and products

Making and running software emits carbon, and in order to be able to
reduce environmental impacts, those emissions need to be measured first.
One approach for that comes from the product manufacturing industry: a
life cycle analysis (LCA) of the carbon emitted during manufacturing (said
to be ‘embodied’ in the product), during use, and during disposal.
In LCA, a ‘functional unit’ is defined as a certain quantity of the product
being analysed, chosen to make the analysis well-defined, scalable and com-
parable. For example, the functional unit might be a single car, produced
and driven at 6 l/100km for 300 000 km and then scrapped.
A ‘system boundary’ is defined which includes all raw material inputs and
processes which are directly or indirectly needed to manufacture, transport,
use and dispose of one functional unit of the product.

https://commons.wikimedia.org/wiki/File:Life_Cycle_Thinking_Product_System.jpg

Life cycle analysis and products

Figure: Life cycle analysis (public domain)20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Life cycle analysis and products

In the case of a car, this would include the raw material extraction and
processing for the metals, plastics, rubber, etc. in the car; the manufactur-
ing of the car itself, delivery to its owner, the oil extraction and processing
for its fuel, the emissions from driving it, and the emissions (or energy and
material recovery) from scrapping it and recycling parts of it.
This kind of analysis is well understood (if not universally adopted yet) in
the manufacturing industries. It’s standardised as the ISO 14000 series.

https://commons.wikimedia.org/wiki/File:Life_Cycle_Thinking_Product_System.jpg

Life cycle analysis and products

Figure: Life cycle analysis (public domain)20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Life cycle analysis and products

Just like cars, software has embodied carbon costs. Those costs don’t
come from raw material extraction or burning petrol, but they come from
building and powering servers, powering networks for data transfer, and
the marginal power usage of the software on an end user’s computer (the
additional power usage compared to if the user wasn’t using that software).
About the only part of the lifecycle of software which doesn’t emit carbon
is disposal.

https://commons.wikimedia.org/wiki/File:Life_Cycle_Thinking_Product_System.jpg

Carbon intensity of power generation

Power source Carbon intensity (gCO2e/kWh)
Hydro 4
Wind 12
Nuclear 16
Solar PV 46

Gas 469
Coal 1001

IT average 300

Figure: Rough carbon intensities of power
generation[wiki-emission-intensity]

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Carbon intensity of power generation

Most software carbon emissions come from generating the energy needed
to power hardware, and hence depend hugely on the carbon intensity of
that power generation (coal is carbon intensive, solar is not).
Other emissions come from the embodied costs of the hardware itself —
roughly 1.2 tCO2e[goclimate-servers] to manufacture a 2019 Dell server
(not including running, transport or disposal costs). The embodied cost
of a laptop is roughly a quarter of that[connell-2010-laptop].

Embodied carbon in software

GNOME could provide carbon labelling for what we
produce

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Embodied carbon in software

I’ve recently bought insulation for my house, and when buying it, you can
look at the datasheet and see what its lifetime carbon cost is. You can
compare insulation from different manufacturers on this basis.
I would be happy to be corrected, but I know of no analyses of the embodied
carbon costs of software.
This is an area where GNOME could improve the state of the software
field. I believe people are eventually going to want to know the carbon
costs of software they procure (especially at business/government scale).
We could provide that information, just like manufacturers of insulation do
— and just like we already provide information about software licensing.
In order to do a rigorous analysis, there are complications like direct and
indirect rebound effects and transformational changes which would need
to be accounted for[Court_2020]. I’ve ignored them for now, for the sake
of making some progress.

Functional unit and system boundary

GNOME
Foundation

Conferences

Hackfests

Marginal costs
on user systems

• Compute
• Network
• Storage

GNOME-administered
servers

CI pipelines

System boundary

Figure: Proposed system boundary for GNOME20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Functional unit and system boundary

So, let’s try and do a rough life cycle analysis for software in GNOME.
Here’s a functional unit (the thing we want to measure the lifetime costs
of), and a system boundary (the processes which we are directly or indi-
rectly responsible for which emit carbon throughout that lifetime).
For certain parts of the system, it might be easier to measure costs in
aggregate (for example, the power consumption of all the GNOME servers,
or the carbon emissions from running a conference, or the embodied cost
of new server hardware).
For other parts of the system, it might be easier to measure costs per
functional unit (for example, the resources used for continuous integration
(CI) of a particular project, or the emissions from running a hackfest for
it).
As long as we’re careful to not doubly-count costs, this split should work
out.

Functional unit and system boundary

GNOME
Foundation

Conferences

Hackfests

Marginal costs
on user systems

• Compute
• Network
• Storage

GNOME-administered
servers

CI pipelines

System boundary

Figure: Proposed system boundary for GNOME20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Functional unit and system boundary

Why is it important to look at the whole system, rather than just run-
ning profiling tools on your app? Because looking at the whole system
counts the project-wide costs and gives an incentive to reduce them which
wouldn’t exist otherwise.
That said, let’s look first at the marginal costs of an app on user systems.

Measuring marginal costs on user systems

Use cases
sysprof + Builder
systemd unit accounting
Kernel power state statistics
Wattmeter on power supply

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring marginal costs on user systems

The marginal costs of your app on a user’s system are all the resources
it uses while installed or running. Disk space, memory, compute time,
network bandwidth, etc. While the improvements in power usage you
could make to your app are likely small, they’re multiplied by the number
of users of the app, which is likely large. I estimate marginal costs like this
are the largest environmental impact GNOME has (see my talk last year).
There are various conventional tools for measuring and improving these
marginal costs — but the first tool you should use is thinking. What use
cases is the app for, how does it serve them, and does it serve them in an
energy-efficient way?

Measuring marginal costs on user systems: Use cases

What use cases are you actually solving?

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring marginal costs on user systems: Use
cases

For example, if your use case is allowing the user to listen to music, is it
energy-efficient to stream the music from a server on the internet all the
time, vs storing it locally?
Or if your use case is for the user to process data in some way, but your
software requires the data in a certain format which means that sometimes
the user has to spend 30 minutes manually reformatting the data first, then
your software is causing 30 minutes of extra computer use (and frustration
for the user) due to not implementing all the appropriate functionality.
That costs energy.

Measuring marginal costs on user systems: sysprof + Builder

Figure: sysprof results in GNOME Builder20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring marginal costs on user systems:
sysprof + Builder

Other tools are available to pinpoint more specific energy consumption
issues. Frequent CPU wakeups, network use and disk I/O are the biggest
consumers of energy for an app, typically.
1 hour of heavily using the CPU will use about 6 gCO2e
(based on a 20W swing in power usage and 300 gCO2e/kWh
intensity[Mahesri2004PowerCB]). 1 GB of network traffic costs
about 17 gCO2e[coroama-hilty-2014].
Use sysprof from within GNOME Builder, or sysprof-cli from the com-
mand line, to plot resource usage on a timeline. There has been recent
work in GLib (unreleased) and libsoup (unmerged) to improve reporting of
wakeups and network usage.

Measuring marginal costs on user systems: systemd unit
accounting

$ s y s t emc t l s t a t u s g eo c l u e . s e r v i c e
• geo c l u e . s e r v i c e − Loca t i on Lookup S e r v i c e

Loaded : l oaded (. . ./ g eo c l u e . s e r v i c e ; . . .)
A c t i v e : a c t i v e (r unn i ng) s i n c e F r i . . .

Main PID : 2645 (g eo c l u e)
IP : 8 . 1M in , 3 . 4M out
IO : 6 . 0M read , 9 . 1M w r i t t e n

Tasks : 4 (l i m i t : 18742)
Memory : 10 .3M

CPU: 1min 42 .217 s
CGroup : / system . s l i c e / g eo c l u e . s e r v i c e

2645 / u s r / l i b e x e c / g eo c l u e20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring marginal costs on user systems:
systemd unit accounting

systemd supports accounting of various resources which processes use,
including CPU time, I/O and network bandwidth. It must be turned on,
but will then be collected for all units. With the recent work to use systemd
for user sessions in GNOME, this gives reasonable (but not total) coverage
of session processes, and is a good way to get an at-a-glance look at costs
and their longer-term averages over a session.

Measuring marginal costs on user systems: kernel power
state statistics

sudo powertop

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring marginal costs on user systems: kernel
power state statistics

powertop is an established way of estimating the power consumption of
processes and of various bits of hardware, and can provide some insight
into the power consumption caused by wakeups from your process. These
occur whenever your process wakes up to handle input, timer events, idle
callbacks or ongoing disk I/O and network traffic.
As per Aditya’s talk at the start of the conference, we may eventually get
a breakdown like this within GNOME Usage.

Measuring CI pipelines

Npipelines × (pipeline duration × 0.114 kW × 300 gCO2e/kWh +

pipeline downloads × 17 gCO2e/GB)

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring CI pipelines

Moving to look at the embodied cost of a specific release of some software,
rather than the marginal cost of running it. CI is an ongoing cost of
development. Its main carbon cost is CPU time, but network bandwidth
can also end up being significant, especially if every CI pipeline downloads
the dependencies for your project from scratch.
The above formula estimates the costs of CI for a project per unit time.
You can extract the numbers from GitLab. When I calculated it for GLib,
the monthly cost was 4 kgCO2e, which is think is not too high. However,
GLib is moderately careful to be efficient with its CI.
For comparison, the target emissions for one person for a year are
4.1 tCO2e[shrinkthatfootprint], of which this would be 1.2%.

Measuring the other bits

We’re measuring GUADEC (thanks Bartłomiej!)

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Measuring the other bits

Limited work has started on measuring these project-wide overheads, but
there is more work still to be done, and there’s not enough information
available to report in a talk yet.
GUADEC this year is being measured, to provide a comparison against
the carbon emissions from an in-person conference. Thanks Bartłomiej for
getting the measurements set up! I’ll be looking into the results after the
conference is over.

https://gitlab.gnome.org/Infrastructure/Infrastructure/-/issues/372

Improving marginal costs on user systems

Where do we want to get to?
Be used for less time
Do less work; use less network
Do work faster; use the network more efficiently
Cache better

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Improving marginal costs on user systems

Once measurement is done, improvements can happen. At what point do
we stop making improvements? Once an application consumes zero en-
ergy? Obviously that’s not possible. My current thoughts on this are that
it’s a competition: if two pieces of software provide the same functionality,
rationally users and distros will choose the one with the lower embodied
and marginal carbon costs.
These costs should be budgeted for by the user who is running the software
— just like the carbon emissions from buying and driving a car should be
budgeted for by the driver, and car manufacturers should compete on
producing cars with low embodied and marginal emissions.
The improvements you can make to your software are all the standard
ones for performance: allow the user to work more efficiently (spending
less time on the computer); do less work, use less CPU to do it; use
less network bandwidth through compression and caching, and bunching
network requests together; and the same for disk I/O.

Improving CI pipelines

Speed up your pipelines (use pre-built Docker images)
Avoid downloads (use pre-built Docker images)
Use shallow clones (see my blog)

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Improving CI pipelines

Unless your CI pipeline is run very infrequently (say, a few times a week),
you should pre-build a Docker image containing all your dependencies, and
run the CI jobs using that image.
That avoids network activity (which is carbon intensive, and can spuriously
fail) and speeds up CI jobs due to not waiting for downloads. Typically it
will speed up your CI pipeline by a factor of around 4.
Using shallow clones for cloning the git repository into a CI runner will
also give some slight speedups, but significant reductions in network use.
I wrote about this on my blog recently, so please go there for details —
fixing it is a matter of changing a setting in GitLab.

https://tecnocode.co.uk/2020/07/09/easily-speed-up-ci-by-reducing-download-size/

Improving the other bits

More measuring to do: Foundation operations, and
every time a hackfest is organised

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Improving the other bits

We’re still in the process of measuring other GNOME project overheads,
such as the cost of server infrastructure and the Foundation as an employer
and organisation. Once the measurements are done then some recommen-
dations can be made on the basis of the data.

https://gitlab.gnome.org/Teams/Board/issues/102

Pulling it all together

GNOME apps should be labelled with their embodied carbon
cost: their share of the GNOME project and Foundation
overheads, plus their costs for CI and hackfests, in each major
release cycle
We don’t have all the data for that yet, but should collect it
Reduce those embodied costs (optimise CI, make hackfests
carbon-neutral)
Reduce the marginal costs of your apps (optimise them, and
don’t waste the user’s time)

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Pulling it all together

So here’s how we pull it all together.

Open questions

1. What is the power usage of a virtualised server?
2. What is the carbon intensity of our server power supplies?
3. Other life cycle analysis impacts (ozone, eutrophication, water

consumption, etc.)
4. How many users do we have??
5. Can we collect better statistics about user systems?

20
20

-0
7-

23
How can I make my project more environmentally
friendly?

Open questions

A lot of this analysis relies on imperfect data. We can’t wait for perfect
data before making improvements; we should improve the project, software,
and data collection in parallel.
If anybody’s got any ideas about these questions, please get in touch!

Miscellany

Slide source https://gitlab.com/pwithnall/
guadec-environmental-presentation-2020

IPCC SR15 summary
https://www.ipcc.ch/sr15/chapter/spm/

Creative Commons Attribution-ShareAlike 4.0 International License

Beamer theme: https://gitlab.gnome.org/GNOME/presentation-templates/tree/master/GUADEC/202020
20

-0
7-

23
How can I make my project more environmentally
friendly?

Miscellany

And that’s it! Please go out there and see what you can do to improve your
applications. Mostly, it will be performance improvements and network
usage reductions. Sometimes, it might make sense to add or rearrange
features to make better use of the user’s time. Please get in touch if
you have ideas, feedback or want to discuss things further — either about
application profiling, or about the climate crisis in general.
If you want to check my analysis, please check out the git repository linked.
The bibliography there has a number of references — if you read just one,
read the IPCC’s SR15 report summary for policy makers[sr15] (it’s short).

https://gitlab.com/pwithnall/guadec-environmental-presentation-2020
https://gitlab.com/pwithnall/guadec-environmental-presentation-2020
https://www.ipcc.ch/sr15/chapter/spm/
https://gitlab.gnome.org/GNOME/presentation-templates/tree/master/GUADEC/2020

