How can I make my project more environmentally friendly?

Philip Withnall
Endless
philip@tecnocode.co.uk
Motivation

Limiting global warming to 1.5°C is a global priority
Life cycle analysis and products

Figure: Life cycle analysis (public domain)
Carbon intensity of power generation

<table>
<thead>
<tr>
<th>Power source</th>
<th>Carbon intensity (g\text{CO}_2\text{e}/\text{kW h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td>4</td>
</tr>
<tr>
<td>Wind</td>
<td>12</td>
</tr>
<tr>
<td>Nuclear</td>
<td>16</td>
</tr>
<tr>
<td>Solar PV</td>
<td>46</td>
</tr>
<tr>
<td>Gas</td>
<td>469</td>
</tr>
<tr>
<td>Coal</td>
<td>1001</td>
</tr>
<tr>
<td>IT average</td>
<td>300</td>
</tr>
</tbody>
</table>

Figure: Rough carbon intensities of power generation[1]
Embodied carbon in software

GNOME could provide carbon labelling for what we produce
Functional unit and system boundary

Functional unit: one dist tarball of a software release
Functional unit and system boundary

System boundary

- GNOME-administered servers
- GNOME Foundation
- CI pipelines
- Conferences
- Hackfests
- Marginal costs on user systems:
 - Compute
 - Network
 - Storage

Figure: Proposed system boundary for GNOME
Measuring marginal costs on user systems

- Use cases
- sysprof + Builder
- systemd unit accounting
- Kernel power state statistics
- Wattmeter on power supply
Measuring marginal costs on user systems: Use cases

What use cases are you actually solving?
Measuring marginal costs on user systems: sysprof + Builder

sysprof-cli -- your-program-here
How can I make my project more environmentally friendly?

Measuring marginal costs on user systems: sysprof + Builder

Figure: sysprof results in GNOME Builder
Measuring marginal costs on user systems: systemd unit accounting

echo -e "DefaultCPUAccounting=yes\n" \
"DefaultIOAccounting=yes\n" \
"DefaultIPAccounting=yes" >> \
/etc/systemd/system.conf
Measuring marginal costs on user systems: systemd unit accounting

```
$ systemctl status geoclue.service
● geoclue.service – Location Lookup Service
   Loaded: loaded (../geoclue.service; ...)
   Active: active (running) since Fri...
   Main PID: 2645 (geoclue)
     IP: 8.1M in, 3.4M out
     IO: 6.0M read, 9.1M written
   Tasks: 4 (limit: 18742)
   Memory: 10.3M
     CPU: 1min 42.217s
   CGroup: /system.slice/geoclue.service
         └─2645 /usr/libexec/geoclue
```

How can I make my project more environmentally friendly?
Measuring marginal costs on user systems: kernel power state statistics

```
sudo powertop
```
Measuring CI pipelines

\[N_{\text{pipelines}} \times (\text{pipeline duration} \times 0.114 \text{ kW} \times 300 \text{ gCO}_2e/\text{kWh} + \text{pipeline downloads} \times 17 \text{ gCO}_2e/\text{GB}) \]
Measuring the other bits

- GNOME-administered servers
- GNOME Foundation
- Conferences
- Hackfests
Measuring the other bits

We’re measuring GUADEC (thanks Bartłomiej!)
Improving marginal costs on user systems

- Where do we want to get to?
- Be used for less time
- Do less work; use less network
- Do work faster; use the network more efficiently
- Cache better
Improving CI pipelines

- Speed up your pipelines (use pre-built Docker images)
- Avoid downloads (use pre-built Docker images)
- Use shallow clones (see my blog)
Improving the other bits

More measuring to do: Foundation operations, and every time a hackfest is organised
Pulling it all together

אירונית GNOME apps should be labelled with their embodied carbon cost: their share of the GNOME project and Foundation overheads, plus their costs for CI and hackfests, in each major release cycle.
Pulling it all together

🌱 GNOME apps should be labelled with their embodied carbon cost: their share of the GNOME project and Foundation overheads, plus their costs for CI and hackfests, in each major release cycle

🌱 We don’t have all the data for that yet, but should collect it
Pulling it all together

翠 GNOME apps should be labelled with their embodied carbon cost: their share of the GNOME project and Foundation overheads, plus their costs for CI and hackfests, in each major release cycle

翠 We don’t have all the data for that yet, but should collect it

翠 Reduce those embodied costs (optimise CI, make hackfests carbon-neutral)
Pulling it all together

 GNOME apps should be labelled with their embodied carbon cost: their share of the GNOME project and Foundation overheads, plus their costs for CI and hackfests, in each major release cycle.

 We don’t have all the data for that yet, but should collect it.

 Reduce those embodied costs (optimise CI, make hackfests carbon-neutral).

 Reduce the marginal costs of your apps (optimise them, and don’t waste the user’s time).
Open questions

1. What is the power usage of a virtualised server?
2. What is the carbon intensity of our server power supplies?
3. Other life cycle analysis impacts (ozone, eutrophication, water consumption, etc.)
4. How many users do we have??
5. Can we collect better statistics about user systems?
How can I make my project more environmentally friendly?

Miscellany

Slide source https://gitlab.com/pwithnall/guadec-environmental-presentation-2020

IPCC SR15 summary https://www.ipcc.ch/sr15/chapter/spm/

Creative Commons Attribution-ShareAlike 4.0 International License